Magnesium sulphate prevented eclampsia in women with pre-eclampsia

Robert Burrows

Evid. Based Med. 2003;8;9-
doi:10.1136/ebm.8.1.9

Updated information and services can be found at:
http://ebm.bmjjournals.com/cgi/content/full/8/1/9

Rapid responses

You can respond to this article at:
http://ebm.bmjjournals.com/cgi/eletter-submit/8/1/9

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections

Articles on similar topics can be found in the following collections

- Pregnancy (822 articles)
- Drugs: obstetrics and gynaecology (87 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to *Evidence-Based Medicine* go to:
http://www.bmjjournals.com/subscriptions/
Magnesium sulphate prevented eclampsia in women with pre-eclampsia

QUESTION: In women with pre-eclampsia, does magnesium sulphate reduce the risk of eclampsia and improve pregnancy outcome?

Design
Randomised (allocation concealed*), blinded (clinicians, patients, data collectors, and data analysts), placebo controlled trial with follow up to discharge from hospital after delivery (MAGnesium sulphate for Prevention of Eclampsia [MAGPIE] Trial).

Setting
175 hospitals in 35 countries.

Patients
10 141 women who had not yet given birth or had delivered within < 24 hours, had pre-eclampsia (diastolic blood pressure [BP] ≥ 90 mm Hg, systolic BP ≥ 140 mm Hg on ≥ 2 occasions, and proteinuria ≥ 1+), and clinical uncertainty existed about the use of magnesium sulphate. Exclusion criteria were hypersensitivity to magnesium, hepatic coma with risk of renal failure, or myasthenia gravis. 99.7% of women were included in each treatment pack in case of eclamptic seizures.

Intervention
Women were allocated to magnesium sulphate (n=5071) or placebo (n=5070). Magnesium sulphate could be given intravenously (IV) or intramuscularly (IM). Standard treatment was a loading dose of 8 ml (4 g of magnesium sulphate) followed by 24 hour maintenance therapy of 2 ml/hour (IV) (1 g/hour magnesium sulphate or placebo) or two 10 ml IM injections (5 g magnesium sulphate or placebo) (1 into each buttock) and 10 ml every 4 hours. An eclampsia rescue pack was included in each treatment pack in case of eclamptic seizure.

Main outcome measures
Eclampsia and death of the baby before hospital discharge (including stillbirths). Secondary outcomes were maternal death and a composite outcome of serious maternal morbidities.

Main results
Analysis was by intention to treat. Fewer women who received magnesium sulphate had eclampsia than did women who received placebo (table). For the 8775 women who were randomised before delivery, the groups did not differ significantly for death of the infant (table). The groups did not differ for maternal death or serious maternal morbidities (table).

Conclusion
In women with pre-eclampsia, magnesium sulphate reduced the risk of eclampsia, but did not significantly improve other pregnancy outcomes.

*See glossary.

Outcomes at hospital discharge

<table>
<thead>
<tr>
<th></th>
<th>Magnesium sulphate</th>
<th>Placebo</th>
<th>RRR (95% CI) NNT (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eclampsia</td>
<td>0.8%</td>
<td>1.9%</td>
<td>58% (40 to 71) 91 (63 to 143)</td>
</tr>
<tr>
<td>Maternal death</td>
<td>0.2%</td>
<td>0.4%</td>
<td>45% (−14 to 74) Not significant</td>
</tr>
<tr>
<td>Infant death</td>
<td>12.7%</td>
<td>12.4%</td>
<td>2% (−8 to 14) Not significant</td>
</tr>
<tr>
<td>Any serious maternal</td>
<td>3.9%</td>
<td>3.6%</td>
<td>7.1% (−30 to 12)‡ Not significant</td>
</tr>
</tbody>
</table>

†Abbreviations defined in glossary.
‡Calculated from data in article.

COMMENTARY

In 1995, the Eclampsia trial showed that magnesium sulphate was superior to diazepam or phenytoin in reducing the prevalence of recurrent eclamptic seizures. This group of investigators and collaborators has now logically moved from treatment to prevention of the primary eclamptic episode. The MAGPIE trial showed that magnesium sulphate was effective regardless of severity of pre-eclampsia, gestational age at trial entry, or whether delivery had occurred. In the Magpie trial and the earlier Eclampsia trial, maternal mortality was reduced but failed to reach statistical significance; however, future meta-analysis will improve power in this regard. Neither study showed any effect on perinatal mortality.

Magnesium sulphate was not effective in reducing the eclamptic rate in countries with a low perinatal mortality rate. It must be noted, however, that less severe cases were involved in these countries and the sample size was small.

The safety of magnesium sulphate at the trial doses is now beyond dispute having been given in several healthcare situations to thousands of participants. Given its safety, effectiveness, and low cost, it is imperative that a concerted effort be made to educate healthcare workers and to make this intervention available to every facility caring for pregnant women. In areas where magnesium sulphate is already used extensively, investigators might want to adjust dosing schedules or run trials to determine if a different dose brings more benefit. One major question concerns the inclusion of participants receiving anticonvulsant interventions before randomisation (approximately 9%). These interventions were, however, equally distributed between magnesium sulphate and placebo groups. Magnesium sulphate showed no effect in this group of patients when analysed separately, but this lack of difference may be a factor of sample size rather than non-effectiveness or dampening effect of the loading dose of magnesium sulphate.

Robert Burrows, MD
Monash Medical Centre
Clayton, Victoria, Australia